Как доказать что фигура параллелепипед. Типы параллелепипеда

На этом уроке все желающие смогут изучить тему «Прямоугольный параллелепипед». В начале урока мы повторим, что такое произвольный и прямой параллелепипеды, вспомним свойства их противоположных граней и диагоналей параллелепипеда. Затем рассмотрим, что такое прямоугольный параллелепипед, и обсудим его основные свойства.

Тема: Перпендикулярность прямых и плоскостей

Урок: Прямоугольный параллелепипед

Поверхность, составленная из двух равных параллелограммов АВСD и А 1 В 1 С 1 D 1 и четырех параллелограммов АВВ 1 А 1 , ВСС 1 В 1 , СDD 1 С 1 , DАА 1 D 1 , называется параллелепипедом (рис. 1).

Рис. 1 Параллелепипед

То есть: имеем два равных параллелограмма АВСD и А 1 В 1 С 1 D 1 (основания), они лежат в параллельных плоскостях так, что боковые ребра АА 1 , ВВ 1 , DD 1 , СС 1 параллельны. Таким образом, составленная из параллелограммов поверхность называется параллелепипедом .

Таким образом, поверхность параллелепипеда - это сумма всех параллелограммов, из которых составлен параллелепипед.

1. Противоположные грани параллелепипеда параллельны и равны.

(фигуры равны, то есть их можно совместить наложением)

Например:

АВСD = А 1 В 1 С 1 D 1 (равные параллелограммы по определению),

АА 1 В 1 В = DD 1 С 1 С (так как АА 1 В 1 В и DD 1 С 1 С - противоположные грани параллелепипеда),

АА 1 D 1 D = ВВ 1 С 1 С (так как АА 1 D 1 D и ВВ 1 С 1 С - противоположные грани параллелепипеда).

2. Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Диагонали параллелепипеда АС 1 , В 1 D, А 1 С, D 1 В пересекаются в одной точке О, и каждая диагональ делится этой точкой пополам (рис. 2).

Рис. 2 Диагонали параллелепипеда пересекаются и деляться точкой пересечения пополам.

3. Имеются три четверки равных и параллельных ребер параллелепипеда : 1 - АВ, А 1 В 1 , D 1 C 1 , DC, 2 - AD, A 1 D 1 , B 1 C 1 , BC, 3 - АА 1 , ВВ 1 , СС 1 , DD 1 .

Определение. Параллелепипед называется прямым, если его боковые ребра перпендикулярны основаниям.

Пусть боковое ребро АА 1 перпендикулярно основанию (рис. 3). Это означает, что прямая АА 1 перпендикулярна прямым АD и АВ, которые лежат в плоскости основания. А, значит, в боковых гранях лежат прямоугольники. А в основаниях лежат произвольные параллелограммы. Обозначим, ∠BAD = φ, угол φ может быть любым.

Рис. 3 Прямой параллелепипед

Итак, прямой параллелепипед - это параллелепипед, в котором боковые ребра перпендикулярны основаниям параллелепипеда.

Определение. Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию. Основания являются прямоугольниками.

Параллелепипед АВСDА 1 В 1 С 1 D 1 - прямоугольный (рис. 4), если:

1. АА 1 ⊥ АВСD (боковое ребро перпендикулярно плоскости основания, то есть параллелепипед прямой).

2. ∠ВАD = 90°, т. е. в основании лежит прямоугольник.

Рис. 4 Прямоугольный параллелепипед

Прямоугольный параллелепипед обладает всеми свойствами произвольного параллелепипеда. Но есть дополнительные свойства, которые выводятся из определения прямоугольного параллелепипеда.

Итак, прямоугольный параллелепипед - это параллелепипед, у которого боковые ребра перпендикулярны основанию. Основание прямоугольного параллелепипеда - прямоугольник .

1. В прямоугольном параллелепипеде все шесть граней прямоугольники.

АВСD и А 1 В 1 С 1 D 1 - прямоугольники по определению.

2. Боковые ребра перпендикулярны основанию . Значит, все боковые грани прямоугольного параллелепипеда - прямоугольники.

3. Все двугранные углы прямоугольного параллелепипеда прямые.

Рассмотрим, например, двугранный угол прямоугольного параллелепипеда с ребром АВ, т. е. двугранный угол между плоскостями АВВ 1 и АВС.

АВ - ребро, точка А 1 лежит в одной плоскости - в плоскости АВВ 1 , а точка D в другой - в плоскости А 1 В 1 С 1 D 1 . Тогда рассматриваемый двугранный угол можно еще обозначить следующим образом: ∠А 1 АВD.

Возьмем точку А на ребре АВ. АА 1 - перпендикуляр к ребру АВ в плоскости АВВ- 1 , AD перпендикуляр к ребру АВ в плоскости АВС. Значит, ∠А 1 АD - линейный угол данного двугранного угла. ∠А 1 АD = 90°, значит, двугранный угол при ребре АВ равен 90°.

∠(АВВ 1 , АВС) = ∠(АВ) = ∠А 1 АВD= ∠А 1 АD = 90°.

Аналогично доказывается, что любые двугранные углы прямоугольного параллелепипеда прямые.

Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Примечание. Длины трех ребер, исходящих из одной вершины прямоугольного параллелепипеда, являются измерениями прямоугольного параллелепипеда. Их иногда называют длина, ширина, высота.

Дано: АВСDА 1 В 1 С 1 D 1 - прямоугольный параллелепипед (рис. 5).

Доказать: .

Рис. 5 Прямоугольный параллелепипед

Доказательство:

Прямая СС 1 перпендикулярна плоскости АВС, а значит, и прямой АС. Значит, треугольник СС 1 А - прямоугольный. По теореме Пифагора:

Рассмотрим прямоугольный треугольник АВС. По теореме Пифагора:

Но ВС и AD - противоположные стороны прямоугольника. Значит, ВС = AD. Тогда:

Так как , а , то. Поскольку СС 1 = АА 1 , то что и требовалось доказать.

Диагонали прямоугольного параллелепипеда равны.

Обозначим измерения параллелепипеда АВС как a, b, c (см. рис. 6), тогда АС 1 = СА 1 = В 1 D = DВ 1 =

Теорема. Во всяком параллелепипеде противоположные грани равны и параллельны.

Так, грани (рис.) BB 1 С 1 С и AA 1 D 1 D параллельны, потому, что две пересекающиеся прямые BB 1 и B 1 С 1 одной грани параллельны двум пересекающимся прямым AA 1 и A 1 D 1 другой. Эти грани и равны, так как B 1 С 1 =A 1 D 1 , B 1 B=A 1 A (как противоположные стороны параллелограммов) и ∠BB 1 С 1 = ∠AA 1 D 1 .

Теорема. Во всяком параллелепипеде все четыре диагонали пересекаются в одной точке и делятся в ней пополам.

Возьмем (рис.) в параллелепипеде какие-нибудь две диагонали, например, AС 1 и DB 1 , и проведем прямые AB 1 и DС 1 .


Так как ребра AD и B 1 С 1 соответственно равны и параллельны ребру BС, то они равны и параллельны между собой.

Вследствие этого фигура ADС 1 B 1 есть параллелограмм, в котором С 1 A и DB 1 - диагонали, а в параллелограмме диагонали пересекаются пополам.

Это доказательство можно повторить о каждых двух диагоналях.

Поэтому диагональ AC 1 пересекается с BD 1 пополам, диагональ BD 1 с A 1 С пополам.

Таким образом, все диагонали пересекаются пополам и, следовательно, в одной точке.

Теорема. В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений.

Пусть (рис.) AC 1 есть какая-нибудь диагональ прямоугольного параллелепипеда.


Проведя AC, получим два треугольника: AC 1 С и ACB. Оба они прямоугольные:


первый потому, что параллелепипед прямой, и следовательно, ребро СС 1 перпендикулярно к основанию,

второй потому, что параллелепипед прямоугольный, значит в основании его лежит прямоугольник.

Из этих треугольников находим:

AC 2 1 = AC 2 + СС 2 1 и AC 2 = AB 2 + BC 2


Следовательно, AC 2 1 = AB 2 + BC 2 + СС 2 1 = AB 2 + AD 2 + AA 2 1

Следствие. В прямоугольном параллелепипеде все диагонали равны .

Цели урока:

1. Образовательные:

Ввести понятие параллелепипеда и его видов;
- сформулировать (используя аналогию с параллелограммом и прямоугольником) и доказать свойства параллелепипеда и прямоугольного параллелепипеда;
- повторить вопросы, связанные с параллельностью и перпендикулярностью в пространстве.

2. Развивающие:

Продолжить развитие у учащихся таких познавательных процессов, как восприятие, осмысление, мышление, внимание, память;
- способствовать развитию у учащихся элементов творческой деятельности как качеств мышления (интуиция, пространственное мышление);
- формировать у учащихся умение делать выводы, в том числе – по аналогии, что помогает осознать внутрипредметные связи в геометрии.

3. Воспитательные:

Способствовать воспитанию организованности, привычки к систематическому труду;
- способствовать формированию эстетических навыков при оформлении записей, выполнения чертежей.

Тип урока: урок-изучение нового материала (2 часа).

Структура урока:

1. Организационный момент.
2. Актуализация знаний.
3. Изучение нового материала.
4. Подведение итогов и постановка домашнего задания.

Оборудование: плакаты (слайды) с доказательствами, модели различных геометрических тел, в том числе – все виды параллелепипедов, графопроектор.

Ход урока.

1. Организационный момент.

2. Актуализация знаний.

Сообщение темы урока, формулировка вместе с учащимися цели и задач, показ практической значимости изучения темы, повторение ранее изученных вопросов, связанных с данной темой.

3. Изучение нового материала.

3.1. Параллелепипед и его виды.

Демонстрируются модели параллелепипедов с выявлением их особенностей, помогающих сформулировать определение параллелепипеда, используя понятие призмы.

Определение:

Параллелепипедом называется призма, основанием которой является параллелограмм.

Выполняется чертёж параллелепипеда (рисунок 1), перечисляются элементы параллелепипеда как частного случая призмы. Демонстрируется слайд 1.

Схематическая запись определения:

Формулируются выводы из определения:

1) Если ABCDA 1 B 1 C 1 D 1 – призма и ABCD – параллелограмм, то ABCDA 1 B 1 C 1 D 1 – параллелепипед .

2) Если ABCDA 1 B 1 C 1 D 1 – параллелепипед , то ABCDA 1 B 1 C 1 D 1 – призма и ABCD – параллелограмм.

3) Если ABCDA 1 B 1 C 1 D 1 – не призма или ABCD – не параллелограмм, то
ABCDA 1 B 1 C 1 D 1 – не параллелепипед .

4) . Если ABCDA 1 B 1 C 1 D 1 – не параллелепипед , то ABCDA 1 B 1 C 1 D 1 – не призма или ABCD – не параллелограмм.

Далее рассматриваются частные случаи параллелепипеда с построением схемы классификации (см. рис.3), демонстрируются модели и выделяются характеристические свойства прямого и прямоугольного параллелепипедов, формулируются их определения.

Определение:

Параллелепипед называется прямым, если его боковые рёбра перпендикулярны к основанию.

Определение:

Параллелепипед называется прямоугольным , если его боковые рёбра перпендикулярны к основанию, а основанием является прямоугольник (см. рисунок 2).

После записи определений в схематичном виде формулируются выводы из них.

3.2. Свойства параллелепипедов.

Поиск планиметрических фигур, пространственными аналогами которых являются параллелепипед и прямоугольный параллелепипед (параллелограмм и прямоугольник). В данном случае имеем дело с визуальным сходством фигур. Используя правило вывода по аналогии, заполняются таблицы.

Правило вывода по аналогии:

1. Выбрать среди ранее изученных фигур фигуру, аналогичную данной.
2. Сформулировать свойство выбранной фигуры.
3. Сформулировать аналогичное свойство исходной фигуры.
4. Доказать или опровергнуть сформулированное утверждение.

После формулировки свойств проводится доказательство каждого из них по следующей схеме:

  • обсуждение плана доказательства;
  • демонстрация слайда с доказательством (слайды 2 – 6);
  • оформление учащимися доказательства в тетрадях.

3.3 Куб и его свойства.

Определение: Куб – это прямоугольный параллелепипед, у которого все три измерения равны.

По аналогии с параллелепипедом учащиеся самостоятельно делают схематическую запись определения, выводят следствия из него и формулируют свойства куба.

4. Подведение итогов и постановка домашнего задания.

Домашнее задание:

  1. Используя конспект урока, по учебнику геометрии для 10-11 классов, Л.С. Атанасян и др., изучить гл.1, §4, п.13, гл.2, §3, п.24.
  2. Доказать или опровергнуть свойство параллелепипеда, п.2 таблицы.
  3. Ответить на контрольные вопросы.

Контрольные вопросы.

1. Известно, что только две боковые грани параллелепипеда перпендикулярны основанию. Какого вида параллелепипед?

2. Сколько боковых граней прямоугольной формы может иметь параллелепипед?

3. Возможен ли параллелепипед, у которого только одна боковая грань:

1) перпендикулярна основанию;
2) имеет форму прямоугольника.

4. В прямом параллелепипеде все диагонали равны. Является ли он прямоугольным?

5. Верно ли, что в прямом параллелепипеде диагональные сечения перпендикулярны плоскостям основания?

6. Сформулируйте теорему, обратную теореме о квадрате диагонали прямоугольного параллелепипеда.

7. Какие дополнительные признаки отличают куб от прямоугольного параллелепипеда?

8. Будет ли кубом параллелепипед, в котором равны все рёбра при одной из вершин?

9. Сформулируйте теорему о квадрате диагонали прямоугольного параллелепипеда для случая куба.

Учащимся старших классов будет полезно научиться решать задачи ЕГЭ на нахождение объема и других неизвестных параметров прямоугольного параллелепипеда. Опыт предыдущих лет подтверждает тот факт, что подобные задания являются для многих выпускников достаточно сложными.

При этом понимать, как найти объем или площадь прямоугольного параллелепипеда, должны старшеклассники с любым уровнем подготовки. Только в этом случае они смогут рассчитывать на получение конкурентных баллов по итогам сдачи единого госэкзамена по математике.

Основные нюансы, которые стоит запомнить

  • Параллелограммы, из которых состоит параллелепипед, являются его гранями, их стороны - ребрами. Вершины этих фигур считаются вершинами самого многогранника.
  • Все диагонали прямоугольного параллелепипеда равны. Так как это прямой многогранник, то боковые грани представляют собой прямоугольники.
  • Так как параллелепипед - это призма, в основании которой находится параллелограмм, эта фигура обладает всеми свойствами призмы.
  • Боковые ребра прямоугольного параллелепипеда перпендикулярны основанию. Следовательно, они являются его высотами.

Готовьтесь к ЕГЭ вместе со «Школково»!

Чтобы занятия проходили легко и максимально эффективно, выбирайте наш математический портал. Здесь вы найдете весь необходимый материал, который потребуется на этапе подготовки к единому государственному экзамену.

Специалисты образовательного проекта «Школково» предлагают пойти от простого к сложному: сначала мы даем теорию, основные формулы и элементарные задачи с решением, а затем постепенно переходим к заданиям экспертного уровня. Вы можете потренироваться, например, с .

Нужную базовую информацию вы найдете в разделе «Теоретическая справка». Вы также можете сразу приступить к решению задач по теме «Прямоугольный параллелепипед» в онлайн-режиме. В разделе «Каталог» представлена большая подборка упражнений разной степени сложности. База заданий регулярно пополняется.

Проверьте, легко ли вы сможете найти объем прямоугольного параллелепипеда, прямо сейчас. Разберите любое задание. Если упражнение дается вам легко, переходите к более сложным задачам. А если возникли определенные сложности, рекомендуем вам планировать свой день таким образом, чтобы ваше расписание включало занятия с дистанционным порталом «Школково».